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Analytical theory of turbulent diffusion 

By P. H. ROBERTSt 
Institute of Mathematical Sciences, New York University, New York 3 

(Received 27 June 1960 and in revised form 7 March 1961) 

Recently Kraichnan (1959) has propounded a theory of homogeneous turbulence, 
based on a novel perturbation method, that leads to closed equations for the 
velocity covariance. In  the present paper, this method is applied to the theory 
of turbulent diffusion and closed equations are derived for the probability dis- 
tributions of the positions of marked fluid elements released in a turbulent flow. 

Two topics are discussed in detail. The first is the probability distribution, at 
time t, of the displacement of an element from its initial position. In homogeneous 
flows, this distribution is found to resemble that for classical diffusion but with a 
variable coefficient of diffusion which is proportional to vEt for t < Z/v, and which 
approaches a constant value .is 127, for t >> Z/v, (I = macroscale, vo = r.m.8. 
turbulent velocity). 

The second topic treated is the joint probability distribution of the displace- 
ments of two fluid elements. Particular attention is focused upon the probability 
distribution of relative displacement, i.e. Richardson’s distance-neighbour 
function. This is found to be Gaussian for separations r which are large (+ I). 
For smaller separations ( r  < Z), its behaviour at high Reynolds numbers is found 
to be quite well expressed in terms of a variable diffusion coefficient K(r, t ) ,  as 
suggested by Richardson (1926). For all but extremely short times, K(r,  t) is 
found to depend only on r and on the form of the inertial range spectrum E(k) .  
On assuming E(k)  cc W E  Z(lcZ)-g as results from Kraichnan’s approximation (1959), 
one finds K ( r )  cc w,Z(r/Z)+. On the basis of similarity arguments of the Kolmo- 
gorov type, which give E(k)  of v~Z(lcZ)-~, one finds K(r)  a voZ(r/Z)$ as, in fact, 
Richardson originally proposed. The dispersion (r2) is proportional to P(v, t/Z)4 
on Kraichnan’s theory; while ( r 2 )  of Z2(vOt/Z)3 on the similarity theory. This 
illustrates that the behaviour of (r2) is very sensitive to  the spectrum. 

1. Introduction 
The aim of the theory of turbulent diffusion is to determine in a statistical 

sense the migration of marked particles as they are carried along with a turbulent 
flow. Like molecular motion in a dilute gas of discrete particles, turbulent dif- 
fusion is a linear process if the convected particles have no reaction on the flow ; 
i.e. the probability distribution for the position of a marked particle in space 
obeys the superposition rule and changes in time according to a linear equation. 
Unlike classical molecular motion, the motion of neighbouring fluid elements in a 
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continuum is correlated, although one expects that over distances large compared 
to the macroscale 1 of the turbulence this correlation is weak and that elements 
separated by such distances move almost independently. Furthermore, unlike 
classical molecular diffusion, turbulent diffusion is not a Markoff process. How- 
ever, one expects that over times large compared to l/vO, where vo is the root 
mean square fluid velocity, the fluid elements will suffer many essentially un- 
correlated deflexions by the energy-containing eddies and that accordingly their 
displacement distribution will be almost Gaussian. Under such circumstances, 
one expects that the spread of marked particles carried by the fluid will indeed 
resemble classical diffusion, and that it will be possible to define a coefficient of 
eddy diffusivity. An analytical basis for these qualitative observations is given 
in 5 2. 

Particles which start out simultaneously at nearby points have closely similar 
histories in any one realization of the turbulent flow (and over times which are 
not too long). For such times, their relative motion is unaffected by eddies whose 
spacial scale is large compared to the initial separation; such eddies give nearly 
equal displacements to the two points. The change in the separation r is governed 
by the smallereddies, particularly thosewhoselengthscaleisof the same order as T. 

Thus, in a flow of the high Reynolds number, we expect that while the particles 
are separated by a distance appropriately small compared to Z their relative 
diffusion will be governed by the inertial range spectrum of the turbulent flow, 
and will be unaffected by the structure of the energy-containing eddies. An 
analytical basis for these surmises is given in $3,  and a form is proposed for the 
variable diffusion coefficient K(r) introduced by Richardson (1926). This form 
for K(r )  is very sensitive to the inertial range spectrum E(k) .  On assuming that 
E ( k )  cc vgZ(kZ)-n, it is shown that K(r)  ot voZ(r/l)n and that, in consequence, 
( r2 )  cc l2(v0 t/Z)2’(2-n). However, on the basic approximation from which these 
results are derived, the energy-containing eddies do play a part in the relative 
diffusion process. It is shown, however, that when modifications of the theory are 
made to exclude this effect, Kolmogoroff’s spectrum E(k)  cc viZ(kZ)-* implies 
K(r )  ot voZ(r/Z)*, as in fact Richardson (1926) originally proposed. 

Turbulent diffusion is a simple example of turbulence dynamics and is therefore 
a suitable testing ground for examining the consequences of various approxima- 
tions. Included in 5 2.2 is a brief comparison between our basic analytical method 
and some alternative approximations. 

2. Diffusion from a fixed source 
2.1. Methods of approach 

There are two main ways of attempting to give an analytical framework to the 
qualitative arguments of 5 1. In  the Lagrangian framework (as distinct from the 
Eulerian approach to be described presently), probability distributions are de- 
fined for the displacements, velocities, etc., of given marked particles, and the 
relationships between them are studied. For example, let G(x, t I xo, to) dx be 
the probability that a fluid particle lying at the point xo at time to should, at  the 
later time t ,  lie within a volume dx at the point x. Let V(x, u,tl  xo, to)dxdu be 



Analytical themy of turbulent diffusion 259 

the probability that this same particle should at that time lie within dx and have 
a velocity between u and u + du. Then it is not difficult to show that 

(In 2.1 and elsewhere, we use the summation convention.) Through the hydro- 
dynamical equations, it is possible to derive a similar, though far more involved 
equation, relating V to another probability function, and this, in its turn, to yet 
another. It would be necessary to close this hierarchy of equations in some way in 
order to obtain from it an evaluation of G ( x ,  t 1 xo, to) .  

The second approach was first formulated by Batchelor (1952b); for a discus- 
sion of the general physical interpretation of the method the reader is referred 
to this paper, and for other applications to papers by Reid (1955) and Roberts 
(1957). The basic idea is one of reformulating the problem of finding Lagrangian 
probability functions as one of determining certain Eulerian moments. A passive 
scalar quantity $(x, t )  is introduced which satisfies the equation 

d iJ 
- m, t )  + at [?&, t )  U i ( X ,  t)l = 0, (2.2) 

where ui(x, t )  is the velocity field. This quantity is therefore carried by the turbu- 
lent fluid, but does not affect its motion. It is clear that if we take 

$(x, to) = - xo), 
where 6 ( x )  is the three-dimensional Dirac &-function, then 

(2.3) 

w 7  t )  = m - xt), (2.4) 

where x, is the position at  time t (in this particular realization of u) of the fluid 
element which was initially at xo. By averaging over all realizations, we see that 

(2.5) 
the solution of a a 

- (m, t ) )  + - ($(x, $1 74x7 t ) )  = 0, at axi 

($@7 to)) = w - xo), (2.6) 

is ($@, t ) )  = G ( x ,  t I xo, to). (2.7) 

which satisfies $he initial condition 

Through a similar though more complicated equation, ($ui) is related to higher 
moments, and so on. Again, we have an hierarchy of equations which must be 
closed in some way in order to evaluate G ( x ,  t I xo, to). 

In  the present paper, we adopt the second of these two approaches and employ 
an approximation method for closing the equations devised by Kraichnan (1959). 
However, before presenting this approximate analysis, we shall derive some 
results which are asymptotically exact for small t - to. 

2.2. Exact results for short times 

For t- to Q l/uo, the fluid particles are simply swept from their points of origin 
with whatever velocity the turbulent fluid happens to have at the moment of 
their release, i.e. 

(2.8) V(X, u, t I xo, t o )  = P[U(X,, toll J[(X - xo) - u(t - to)], 
17-2 
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where P[u(xo,to)] is the probability density function (p.d.f.) of u at; position 
xo and time to. Thus, by (2.1), or by inspection, 

(2.9) 

a result due to Batchelor (1952a).  
This result can also be deduced from the formal solution 

which one obtains from ( 2 . 2 )  by integration and iteration. When t - to  < l/vo, 
then u(x, t )  = u(xo, to), and it follows that 

a 1  a 2  
1 - ( t  - to) uz(x t ) - + - (t  - t0)2Ui(XO, to )  U j ( X  t ) ~ - 

0 ,  0 axi 2 !  0,  0 axiaxj 
(2.11) 

Hence, by (2.6) and (2.7), 

a 
- (t - t o )  (ui(X0, t o ) )  - axi 

i.e. that is 

where 

is the characteristic function for the distribution of 
Equation (2.9) is simply the inverse of (2.15). 

~ ( q )  = S . ~ [ u ( x ~ ,  to)] e-in*"du 

J 

(2.15) 

(2.16) 

velocity at xo and to. 

This second method of establishing the behaviour of G at small times brings 
out somenoteworthy features. If (2.12) is cut o f f  after any finite number of terms, 
it implies that G ( x 7  t I xo, to) vanishes identically for non-zero x - xo. On the other 
hand, if (2.14) is cut o f f  after a finite number of terms, the resulting expression for 

diverges for large k ,  or large t - to. One concludes that any  reasonable approximate 
solution for the ful l  space-function G ( x , t  I xo,to) mwt include terms of all orders 
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of the formal expansion (2.10). Even for very short times the formal expansion is 
only useful because we happen to be able to sum it to all orders. However, if the 
moments 

( A x  = x - xo) are expanded by means of the formal solution, the resulting series 
appear to converge for allt - to, although the convergence is poor unless t - to < Z/wo. 
Equation (2.14) shows that for small t - to, 

(Axi Axj) = qj(xo,tO;xo, t o )  (t-tt,)', (2.17) 

where Vij(x, t ;  ~ 0 ,  t o )  (~i(x,  t )  Uj(X0, t o ) )  

is the velocity covariance. In  the isotropic case, therefore, 

  AX^ Axj) = V ;  dij(t - to)', (2.18) 

where v: is the mean square of any component of velocity at position xo and time 
to-  

There is fairly strong experimental evidence (see, for example, Batchelor 
1953, ch. 8) that P almost always is closely Gaussian. It follows, as Batchelor 
(1950) has pointed out, that G(x, t I xo, to) must be closely Gaussian for short times. 
Then by (2.14) and (2.9) we have 

1 
G(k, t I xo, t o )  = - exp [ - * U i j ( X 0 ,  to ;  xo, t o )  kikj(t - (2.19) 

(27713 

x exp [ - $uii Axi Axj(t  - to)-z], (2.20) 

where uij is the cofactor of qj(xo, to; xo, to) and det Qj denotes the determinant of 
these quantities. In  the isotropic case, 

- 1 
G(k, t I xo, to) = -exp [ - *k2v2,(t -to)'], (2.21) 

(27d3 
1 

G(x, t I x0, to) = ____-__  exp [ - (x - xo)2/zv;(t - top]. (2.22) and 
[2nv?(t - tO)2]P 

2.3. An integro-differential equation for G(x, t I x,, to) 

When t -to is not small compared to Z/wo, the approximation (2.11) to the formal 
solution (2.10) is invalid since it is no longer legitimate to ignore the space and 
time variation of ui(x, t). It is nevertheless possible to effect a partial summation 
of (2.10) which includes terms from every order in the expansion, and is such that 
the resulting expression for 0 converges for large k. The integral equation for 
this approximate form of G can be derived in two different ways. The first 
make suse of Kraichnan's direct interaction approximation (Kraichnan 1959). 
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In  the second method which has been discussed elsewhere (Roberts 1960), the 
same result is derived by discarding or retaining terms in the formal expansion 
according to a certain selection criterion. The terms retained are of all order. Each 
of these methods supposes that the velocity field is spatially homogeneous, but 
this restriction can be removed by the application of a more general method due 
to Kraichnan (1961). The final result, for the case where the mean field (u(x, t ) )  
vanishes, is the equation 

Here, as later, the fluid velocity is supposed incompressible: 

au,(x, t)/ax, = 0. (2.24) 

(The compressible case can be treated by similar methods.) In  the case of statis- 
tically homogeneous and stationary flows, we may write 

(2.25) 

and, upon a partial integration, (2.23) becomes 

a2 s” dt’ I~X’~&~(X’, t ’) G(x’, t ‘ )  G(x - x’, t - t’). (2.26) 
a 
at ax,axj 
-G(x,t) = ___ 

This result-a consequence of Kraichnan’s direct interaction approximation- 
is the central result of this section and much of this paper. To prove it, we first 
notice that, when the velocity field is spacially homogeneous, the problem of 
diffusion from a point source, although apparently possessing only radial sym- 
metry even in the isotropic case, can always be rephrased as a homogeneous 
problem. For, since the equation (2.2) is linear, the response of the system to an 

(2.27) initial disturbance +(x, to)  = eikex, 

is 

and, since for a homogeneous velocity field G(x, t I xo, to)  depends on x and xo 
in the combination x - x, only, equation (2.28) can be rewritten 

($(x, t ) )  = (2n)3 G(k, t I to)  eikeX, (2.29) 

where (2.30) 

is the Fourier transform of the Green’s function G(X, t I xo, to) ,  Equation (2.29) 
proves the average response matrix of the Fourier modes is diagonal (when the 
velocity field is homogeneous) and that (%)3Q(k, t 1 to)  is the average response 
function for mode k. 

Having established this correspondence, we will now derive the approximate 
equation (2.26) for the response function by a method parallel to that employed 
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by Kraichnan (1959)t for the velocity field response function. For simplicity, 
we will suppose henceforth that the velocity field is also statistically stationary. 
The modifications necessary if the field is not stationary are easily included. 

It is convenient to introduce the artifice of cyclic boundary conditions over a 
large cube of side L in order to expand $(x,  t )  and u(x, t )  in Fourier sums rather 
than Fourier integrals: 

(2.31) 

u(x , t )  = xii (k , t )e ik .x  [ii(k) = ii*(-k)], (2.32) 
k 

(cf. K., equation (2.1)). Equation (2.2) may be written 

(2.33) 

where p = k - q. The response function @(k,  t )  for mode k is the solution of (2.33) 
under the initial conditions 

(2.34) 

(of. 5 2.1). By the equation of motion $,(q, t )  and the direct interaction approxi- 
mation, we find (cf. K., equation (2.24)) that 

$ k ( q , t )  = -i~zs~cz(-p,t’)@(k,t’)@(q,t-t‘)dt‘. (2.35) 

Thus by (2.33) we have 

-- - - x k i k j  Gi(p7t)Zj( -p , t ’ )@(q , t - t ’ )@(k , t ’ )d t ’ ,  (2.36) 
at Q 

and, on averaging, using the principle of weak statistical dependence (cf. K., 
52.2 and equation (2.25)), we find 

(2.37) 
Now let us take the limit. Make the transition L 3 00. Let 

(2.38) 

so that 

q j ( x - x ’ , t - t ‘ )  = (ui(x,t)uj(x’, t’))  = q j ( k , t - t ’ )  eik-(r-f)dk, (2.39) 

(2.40) 

s 
and let 

t This paper will be designated by ‘K.’ hereafter. Some differences in notation should 
be noted: In K., g(k, t )  refers to the velocity field (impulse) response function and not to 
the response function for (2.33) below. Also, in K., g refers to an averaged response while, 
in this paper, it does not ;  the average being denoted by (9). Further, the notational 
distinction between a quantity and its Fourier transform is different from that adopted 
in this paper. 
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so that equations (2.30), (2.31) and (2.34) are consistent (cf. K., equations (3.2), 
(3.3)). Then 

s: s -- - - (27~)~k~JCi dt’ dqqj(p, t‘) d(q, t ’ )  d(k, t-t’). (2.41) ad (k, t )  
at 

This result can be returned to physical space by writing it as 

(2.42) 
that is (cf. equations (2.30)’ (2.39)) 

s: s -- ad(k’ t, - - k,ki dt’ dx‘Uij(x’, t ’ )  G(x’, t ’ )  s (k ,  t - t ’ )  e-ik-x’. (2.43) 
at 

On using equation (2.30) again, we recover equation (2.26). 
We will now investigate some elementary consequences of equation (2.26). 

On multiplying each side by xixi and integrating over all x and the right-hand 
side by parts, we find 

(2.44) 

1: s a 
/xixj at G(x, t )  dx = 2 dt‘ dx’qj(x’, t’) G(x‘, t ‘ ) ;  

a 
at (Xixj) = 

that is (Xixi) = 2tKij(t), 
where Kij(t) is defined by 

K&) = 5 ‘ dt’(t - t ’ )  dx’Gj(x’, t’) G(x’, t ’). (2.45) 

For short times (t 4 Z/u,), (2.44) and (2.45) agree with (2.17) if we assume G(x’, t ’ )  
is negligible unless jx’l 

t s o  s 
1. Then, 

Kij  0) (t + 0). 
For large times ( t  3 Z/vo), 

(2.46) 

= K:, say. (2.47) 

Thus, for large times, ~ { ~ ( t )  can be recognized as an effective ‘eddy diffusivity’. 
Let us assume that the diffusion for time 2 l/v, is dominated by the energy- 
containing eddies. Then it is reasonable to suppose that the integrals (2.47) 
should depend only on the parameters 1 and u,, whence, by dimensional reasoning, 
we must have 

K$ = constant of order lv,. 

In  the isotropic case, we have (setting x = 1x1) 

(2.48) 
471 t 

K~~ = K&, K = s0dt’(t-t’) 1; dx’~’~i&(x’, t’) G(x‘, t ’ ) ,  

K; = ~ ~ 8 ~ ~ ,  K~ = 9 som dt’1; dx’x’2Qi(x’, t ’ )  G(x’, t ’). (2.49) 
3 

and 
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Equations (2.44) and (2.45) and their generalizations for flow which are 
not steady or homogeneous, imply that the Lagrangian correlation function 
(u i ( t )  Uj(t0))L = 4, i j ( t -  t o )  (say) is 

ULij(t - t o )  = dxU,j(X, t ;  x0, to) G(x,  t I x0, to ) .  (2.50) s 
s 

This should be compared to the exact result 

ULij(t - t o )  = dx(u i ( x ,  t )  uj(x0, to) $(x, t I ~ 0 ,  to)), (2.51) 

where $(x, t I xo, to) denotes theunaveraged Green’s function, i.e. the solution (2.4) 
of (2.2) satisfying (2.3). Equation (2.50) clearly may be obtained from (2.51) 
on the assumption that the $ and u fields are statistically independent (see also 
Corrsin 1960).t However, if one decides to use an assumption of this kind, the 
results depend very much on what stage of the analysis is chosen for its applica- 
tion. For example, had we assumed that $ and u are uncorrelated in (2.3)’ we 
would have obtained the absurd result a($(x,  t)) /at  = 0. Moreover, if the approxi- 
mation 

(u i  (x, t )  U j ( x 0 ,  to) $(x, t I ~ 0 9  t o ) )  = U,j(x, t ;  ~ 0 3  to) G(x,  t I ~ 0 ,  t o )  (2 .52)  

is used to close the hierarchy of equations which arise from (2.2) and (2.3), the 
result is not consistent with (2.50) (cf. Roberts 1957). Thus, the direct-interaction 
approximation is consistent with (2.52) only if (2.52) is used in a particular way. 
It is not clear why this should be so. However, Bourret (1960), in studying a 
model of turbulent diffusion due to Taylor (1923) (and which is described briefly 
below), has commented that, although the particle displacement cannot be 
Markovian, it may not be unreasonable to suppose that the particle velocity is 
Markovian. If this is the case, it is perhaps not altogether surprising that, when 
the quasi-normality approximation is applied directly to the equations for 
G ( x ,  t ) ,  it  should give worse results than when appliedt to the Lagrangian velo- 
city correlation. 

Equation (2.26) is non-local in space and time, in contrast to an ordinary - 

a2G(x, t )  
at axi axj -- aG(x, t )  - KG-. 

diffusion equation: 
(2.53) 

Equation (2.53) describes molecular diffusion on time and distance scales large 
compared to the collision time and the mean free path, respectively. Over these 
large times and distances, molecular diffusion may be thought of as a random 
walk process for molecules. In  like manner, turbulent convection may be thought 
of as a random walk process for fluid elements in which the effective step length is 
N 1, and the effective velocity is N uo. In  fact, we shall see in 5 2.5 that, on length 
and time scales large compared to Z and Z/w, respectively, (2.26) does reduce to 
the form (2.53). On smaller scales, however, the equation governing G ( x , t )  
must reflect the persistence of correlations over finite space and time intervals. 

t Saffman (1959) has used the approximate result (2.50) to derive an estimate for K 

(see 0 2.5 below). 
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Batchelor & Townsend (1956, 5 2, p. 360) f i s t  suggested that this non-localness 
may be best expressed by an integro-differential equation. Another such equation 
has been derived by Bourret ( 1960) by generalizing a property of a simple model 
of turbulent diffusion due to Taylor (1922) which incorporates a persistence of 
velocity correlation along the path of the diffusing element, i.e. a finite Lagrangian 
correlation time. Taylor supposed that the fluid elements moved with velocity 
& v between the equally spaced points of a lattice on the x-axis, and that the 
motion of an element could only be reversed at a lattice point, the probability of 
such an event being q. Following Goldstein (1951), who made a detailed study 
of Taylor’s model, Bourret considered the limiting case q --f 0, d + 0, dlq + 1, 
where d is the lattice separation. He proved that, for Taylor’s model, G(x,t) 
satisfied an integro-differential equation whose generalization to three dimen- 
sions is 

(2.54) 

Bourret made the hypothesis that (2.54) is not a property of Taylor’s model 
alone, but is more generally valid. 

We may write (2.26) in the form 

(2.55) aG(x,t) - = ~ 1 1 d t ’  a 2  /dx’Qij(x - x’, t - t ‘ )  G(x’, t’), 
at- a4 axj 

where, according to our application of Kraichnan’s approximation, 

Qij(x, t )  + G(x, t )  qj(x, t ) .  

Equation (2.55) bears a strong formal resemblance to Bourett’s result. Like 
(2.55), equation (2.54) is non-local in time but, unlike (2.55), it  is local in space. 
This seems to imply that, although (2.54) takes into account the persistence of 
velocity correlation along the path of a fluid element, it does not take into account 
the fact that a cloud of marked particles set down at  random in a turbulent flow 
must also display velocity correlation in space at any instant of time. The fact 
that it does not do so is not surprising since the model from which (2.54) was 
derived also does not incorporate this spatial velocity correlation. It would 
appear that such a correlation is contained in (2.55) through the spacial non- 
localness of that equation. This conclusion is supported by a study of a generaliza- 
tion of Taylor’s model (Roberts 1961); we consider two fluid elements in motion 
along the lattice defined in Taylor’s model, and suppose that the probability of 
the reversal of the velocity of either element on encountering a lattice point 
depends on whether the two elements were moving in the same or in opposite 
directions immediately before the encounter. It is found that (2.55) is obeyed 
and that Qij(x, t )  is the Green function for the equation governing the diffusive 
flux. It is also found that (2.54) is obeyed if, and only if, the motion of the two 
elements is uncorrelated. 

2.4. Xolution of the equation for short times 

For t < llv,, we may assume that the G factors in the integrand of (2.23) are 
negligible unless x-x, and x’-x, are both small compared with 1. Thus, 
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Uij(x’, t’, xo, to) in the integrand may be replaced by qj(xo, to, x,, to) or, in the 
isotropic case, by v;Stj. It follows that 

s: s a 
at 
- G(x, t )  = v;V’ dt’ dx’G(x’, t ’ )  G ( x  - x‘, t - t’). (2.56) 

Taking the Fourier transform 

G ( x ,  t )  = Q(k, t’) eikeXdk, 

(2 .57)  -Q(k,t) = -(2n)3v2,k2 dt’G’(k,t’)Q(k,t-t’). we find 

By taking the Laplace transform of (2.57),  or by using a result of Watson (1944, 

s 
s: a 

at 

$12.2, equation (5)), we find 
1 J1(2kv1t) 

O(k, t )  = - - ( k  = lkl). 
( 2 7 ~ ) ~  kv, t 

(2.58) 

Inverting by using a further result of Watson (1944, 0 13.42, equation ( 4 ) ) ,  we 
find 

(2.59) 1 [4v2,P-x2]-4 if x < 2vlt ,  

if x > 2v1t. 
G(x,  t )  = ( 2 n ~ , t ) ~  lL 0 

The corresponding probability distribution D(xl, t )  for displacement along the 
q-axis (whose direction may be chosen arbitrarily) is related to G(x, t )  by 

aD(x, t ) / &  = - ~~TzG(z, t ) ,  

and so, in the present case, 

[4v:t2 - x2,]* if x1 < 2v1t, 

if x1 > 2vlt. 

(2.60) 

(2.61) 

Both G(x, t )  and D(zl, t )  are everywhere non-negative, but they are zero beyond 
a distance of 2v1 t from the source. That this behaviour is not restricted to small 
times can be proved directly from equation (2 .26)  by induction. The finite 
maximum ‘propagation speed ’ exhibited by equation (2.59) therefore persists for 
all times. This is also consistent with equation (2.9) which implies, in the present 
case, that the p.d.f. of velocity has a sharp cut-off at  u = 2v1. In  fact, this p.d.f. 
predicted by the direct interaction approximation agrees with the actual p.d.f. 
of velocity only as far as the second moments. 

A related unrealistic feature of (2.59) is that O ( x , t )  -+ 00 as x -+ 2 v l t - 0 .  
However, the singularity is weak, since 

that is, the singular outgoing wave-front does not even carry a finite integrated 
probability. This singular type of behaviour may be attributed to the combined 
effects of persistence of velocity and finite maximum propagations peed. Another 
example is provided by Taylor’s model (Taylor 1922). In  this case the singular 
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outgoing wave-front even carries a finite integrated probability (cf. Goldstein 
1951, Q 8 ) .  

For a normally distributed velocity field, a comparison of equation (2 .58)  in the 
form 

with the exact solution 

shows that, for short 

- 1 ( -  1)" (kv t)2" 
G ( k , t ) = - - - - x -  --l--, 

(277)3 n!(n+l ) !  

(2 .21)  in the form 

(2.62) 

(2.63) 

times, the direct interaction approximation gives the 
second momenta of G(x, t )  correctly. The fractional errors in the fourth, sixth, 
and 2nth moments are, respectively, Q, #, and [ l  - 2"/(n + l ) ! ] .  This exhibits in 
another way the consequence of the effective cut-off in 'propagation speed'. 

2.5. Solution for large times 

For t @ l/v,,, the diffusing particles will have suffered many displacements 
(statistically almost unrelated) from the energy-containing eddies, and we may 
expect Gfx ,  t )  to become close to a Gaussian distribution. Batchelor & Townsend 
(1956, p. 358) have shown that this can be established, granted the truth of an 
as yet unproved extension of the central limit theorem. Alternatively, we may 
proceed directly by expressing the moments of the distribution of x as integrals 
over the Lagrangian velocity correlations. As Taylor (1922) has shown 

where 

( X i X j )  --f 2K:jt ( t  + co), (2 .64)  

(2 .65)  

Let us apply the argument used by Taylor to derive this result to the evaluation 
of a fourth moment such as (x ix jxkx , ) .  We find 

Let 7 be the Lagrangian velocity correlation time (assumed finite). It is clear 
that the integrand of (2.66) is negligibly small unless 

either 

or 

or 

or 

It,-t21 < 7 and It3-t41 < 7 ,  

ltl-t31 < 7 and It4-t21 < 7 ,  

It,-t41 < 7 and It2-t31 < 7 ,  

Ita-ta( < 7, all a,/3 = 1-4. 

For t @ 7, the region defined by the last of these inequalities makes a contribution 
to ( x i x j  xkxz )  of the order of 

The integral over S,, s2, s3 is bounded and independent oft,. Thus the contribution 
made by this region to ( x i x j x k x , )  is of order t ,  t -+ 00. However, the ranges of 
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t ,  to t, for which the first of the inequalities alone is satisfied, makes a contribution 
to (x ix jxkxz)  which is of order t2, t + 00. It is 

which is equal to (x ix j )  ( X k x z ) .  The regions defined by the other inequalities make 
similar contributions. It follows that, for t $ T, 

( X i X j X k X Z )  = ( X i X j )  ( X k Z J +  ( X i X k )  ( X Z X J  + ( X i X Z )  ( X j X k h  

that is, the fourth cumulants are negligible if t $7. Similar arguments hold for 
moments of all orders, showing that G ( x ,  t )  approaches normality as t + 00. 

By a proof which is an exact parallel to the above, we can show that, fort $ l/vo, 
the distribution satisfying (2.26) approaches normality and that the correspond- 
ing eddy diffusivity is 

K; = 10 dt’/dx’C(x‘, t’) Uij(x’, t’). (2.67) 

Consider, for example, the fourth moment ( X i x j x k x i ) .  It is easy to show from 
(2.26) that 

xk x Z )  = (xi  rj) (xk  x Z )  f (xi xk) <xj x Z )  + (xi %) (.jXk) 

Assuming that expressions such as 

converge as t --f co, we see that for t $ Z/v, the first three terms on the right-hand 
side of (2.68) are of order while the remainder are of order %v0t and there- 
fore are comparatively negligible. Thus the fourth-order cumulants can be 
neglected if t $ Z/vo. Similar arguments hold in all orders and show that G 
approaches normality. This result may also be established by the following 
alternative method. 

If  t $ Z/vo, the mean distance J ( x z )  the particles will have travelled from their 
source and will be large compared to I so that the length and time scales of G(x ,  t )  
will be large compared to l and l/vo, respectively. Under these circumstances, the 
only regions of integration in (2.26) for which the integrand is appreciable are 
those for which G(x-x‘,t-t‘) is approximately equal to G(x, t ) .  Thus, with 
K; given by (2.67), we have 

a2G(X, t )  ___- - K; ___ aG@, t )  
at axiaxj 

(2.69) 

since for such large times it is immaterial whether the upper limit of integration in 
(2.36) is t or 00. In  the isotropic case (2.69) becomes 

-- aG(x’ t ,  - K ~ V ~ G ( X ,  t ) ,  
at 

where K- is given by (2.49). 

(2.70) 
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We may regard (2.69) as the first term in a series of approximations based on 
expanding the term G(x - x', t - t ' )  in the integrand of (2.26) in a Taylor series 
about the point (x, t ) ,  andwe may apply an aposteriori check on the reasonableness 
of the approximation by verifying that, on substituting in the second term of this 
series the value of G(x, t )  derived from (2.69), this second term is small compared 
to either side of (2.69). We will refrain from giving the analysis which is straight- 
forward. It confirms that, if the relevant integrals converge, the necessary 
conditions for the validity of (2.69) are 

t B z/vo, 2 < vot. (2.71) 

The second condition arises from the finiteness of the maximum propagation 
velocity which, as we have already seen, gives an artificial cut-off at  the distance 
2v1t. We may expect that for the actual case in which this cut-off is not present 
the second of the conditions (2.71) would be unnecessary and that the distribu- 
tion of particles would be Gaussian at all distances. In  any event, when the first 
condition is satisfied, it is clear that the fraction of particles affected by the second 
condition is negligibly small. 

It seems extremely likely, from the exact short-time result of $2.2 and our 
present results for large times, that G(x, t )  is nearly Gaussian for all times, and 
that the variably diffusion coefficients defined in $2.3 (cf. equations (2.44), 
(2.45) and (2.48)) will give useful estimates of thevariance of the distribution at  all 
times. On assuming a Gaussian form for G(x, t ) ,  we obtain from (2.45) an integral 
equation for K i j ( t ) .  The approximation of (2.51) by (2.50) has been proposed 
independently by P. G. Saffman (unpublished) in the homogeneous case. By 
assuming a Gaussian form for G(x, t ) ,  and the isotropic form 

(2.72) 

he has obtained from the integral equation for K~~ the estimate 

K" N 0-7V,/ko, (2.73) 

where m*k;l is the longitudinal integral scale (cf. Batchelor 1953, p. 47). 

3. Relative diffusion 

In  this section, we study the correlation between the motion of two marked 
particles which are initially separated by a distance small compared to 1. The 
choice of method is essentially that of 5 2.1 and again we will adopt a formulation 
in terms of Eulerian moments. We introduce the passive scalar field $l(x, t )  for 
the first particle and $2(y , s )  for the second particle, and we require that both 
fields satisfy (2.2). For $l(x, t ) ,  we take as initial condition 

(3.1) 

(3.2) 

(3.3) 

3.1. Formulation of problem: exact results for short times 

$l(X, t o )  = w - xo), 
$.2(~, so) = S(Y - yo) .  

B(x, t ;  Y ,  s I xo, to; Yo, 80)  = ($Ax, $1 $2(Y, 4). 

and, for $2(x, 4, we take 
Let us define 
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This is the joint p.d.f. of particle displacements x and y at times t and s from 
positions xo and yo at initial instants to and so, respectively. We shall term this 
‘the two particle Green’s function’. Clearly, since the two particles have identi- 
cal properties, 

~(x,t;Y,~IXo,t,;Yo,so) = B(y,s;x,tl Yo,S;xo,to). 

In  homogeneous steady turbulence, it depends only on difference times and dif- 
ference co-ordinates. We shall then write it as 

B(x - xo, t - to; Y - Yo, - 80 I ro, 7 0 )  = B(Y - Yo, s - 8 0 ;  x - XI), t - t o  I - ro, -701, 

where ro = yo-xo and 7o = so-t0.  

function of Q 2 is recovered. Of more interest is the integral 
It is evident that if one integrates (3.3) over all x or all y the one-point Green’s 

R(r, t , s  I xo, ro,to,so) = dxB(x,t; x+r , s  I ~ ~ , t ~ ; ~ ~ + r ~ , ~ ~ ) .  (3.4) s 
R(r, t ,  t I xo, ro, to, to) is Richardson’s ‘distance neighbour function’ (Richardson 
1926). It denotes the p.d.f. at  time t of separation r for a pair of particles which a t  
time to were situated at xo and xo + ro. For the homogeneous and stationary flows 
with which we will be primarily concerned, R depends only on r,,, T ~ ,  r - ro, t - to, 
and s - so and will be written? 

R(r-ro,t-to,s-soI ro,70) = dxB(x-xo,t-to; ( x - ~ ~ ) + ( r - r ~ ) , s - ~ ~ I  ro,70). 

(3.5) 
s 

Let us now assume that the Reynolds number of the flow is sufficiently high 
that an inertial range of wave-numbers, or eddy sizes, exists. By this we mean that 
the wave-numbers which contain most of the energy are distinct from the higher 
wave-numbers which are responsible for most of the energy dissipation. Suppose 
now, that ro lies with this inertial range of eddy sizes. The eddies of dimension 
large compared to ro move the two marked particles together bodily without 
substantially altering the magnitude or direction of ro. In  a frame of reference 
moving with these large-scale motions, the eddies of dimension small compared 
to ro are associated with a small r.m.s. velocity and have little effect upon ro. 
The rate of separation of the particles, in this case, is dominated by eddies of 
dimension N ro, because such eddies make the principal contribution to the rela- 
tive velocity of two points separated by a distance ro (cf. Batchelor 1953, ch. 6). 
These eddies disperse the particles substantially in a time of order 

For times short compared to T(ro),  we may apply arguments similar to those of 
$2.  These show that (cf. equation (2.9)) 

t A notational point must be noted here: the first argument of R in the definition (3.5) 
is r - r,,, the change in separation, and not r, the separation itself. 
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where P[u,(xo, to) ,  u,(yo, so)] is the joint p.d.f. for velocity u, at position xo and 
time to and velocity up at position yo and time so. It follows (cf. equation (2.17)) 
that 

( A x i A y j )  = A x i A y j B ( x , t ; y , s I  x o , t o ; ~ o , s o ) d x d ~  

= 2Uij(Xo, to;  Yo, s o )  (t  - t o )  (8 -so), (3.8) 

ss 
where Ax  = x - xo and Ay = y -yo. Also, for these short times, (3.7) shows that 
Richardson’s function is 

(3.9) 

where YIV(ro, to)] is the p.d.f. of rehtive velocity V between the two points xo 
and xo + ro at time to. It follows from (3.9) that 

(Ar,  A r j )  = (q J$)  ( t  - to),,  (3.10) 

which, for an isotropic field with r,-axis along r,, gives 

(3.11) 

wheref(r, t )  and g(r,  t )  = f ( r ,  t )  + iraf  (r ,  t ) p  are respectively the longitudinal and 
transverse velocity correlations at  time t for points separated by a distance r .  
Thus, Richardson’s function is initially oblate spheroidal with the line joining 
the origin (r = 0) to r, as axis. All these results for short times are essentially due 
to Batchelor ( 1 9 5 2 ~ )  and are included here for comparison purposes (see 53.3). 

1 = ((Ar,)2) = 2vz,[l - 90.0) to11 ( t  - to )2 ,  

( ( A r d 2 )  = 2v;P -f ( Y o ,  t o ) ]  ( t  - t o ) 2 ,  

3.2. Integro-differential equations for B(x,  t ;  y ,  s I xo, to; yo, so) 

When t - to and s - so are not small compared to T(ro) ,  it is no longer legitimate to 
ignore the spatial and temporal variations of ui(x, t ) .  It is, nevertheless, possible 
to effect a partial summation of the formal solution for B containing terms of all 
orders in the expansion. Since the determination of B is a problem which is 
essentially inhomogeneous (even if the velocity field is homogeneous), the 
Fourier modes are not weakly dependent and the methods expounded by 
Kraichnan (1959) are not applicable. However, Kraichnan (1961) has recently 
generalized his methods to inhomogeneous problems, and has given an approxi- 
mate equation of motion for the covariance ($(x, t )  $(x’, t’)) of a convected 
passive scalar field. A straightforward generalization to our case of two scalar 
fields yields the result 

where G(x, t I xo, to) is the one-point Green function of 5 2. An equation similar 
to (3.12) holds for a q a s .  
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The equation for R(r,  t ,  s 1 xo, ro, to, so) that can be obtained from (3.12) by 
integration may also, in the case of homogeneous velocity fields, be derived quite 
easily by a device which reduces the problem to a fully homogeneous one. 
Instead of imagining a single pair of fluid elements placed initially (i.e. at  t = to, 
s = so) at xo and yo (yo-xo = ro), we imagine an infinite number of such pairs 
which are statistically independent and distributed homogeneously throughout 
space. All these pairs have the same separation ro, and for each pair the signs of 

and $2 are, with equal probability, either both positive or both negative; 
the signs assigned to different pairs are statistically independent of each other. 
The $1 and $2 fields constructed in this way are strictly homogeneous, have zero 
means, and are such that 

($l(X, t )  + r, 4) = R(r - ro, t ,  s I ro, to ,  so) ,  (3.13) 

where the left-hand side refers to the homogeneous problem just constructed and 
the right-hand side is the Richardson function for the original inhomogeneous 
problem. 

Having established this correspondence, we again adopt cyclic boundary con- 
ditions and expand 

$l(x, t )  = gl(k, t )  eikJX-%), (3.14) 

k2 and u for the homogeneous problem in the forms 

k 

$2(y, s)  = $2(k, s )  eik*@-yo), 
k 

(3.15) 

u(x, t )  = ii(k, t )  eik*x, (3.16) 

(cf. K., equation (2.1) and footnote on p. 263 above). Then equation (2.2) for the 

k 

field may be written 

t ,  + iki 2 .iii(p, t )  e--ip+ gl(q, t )  = 0, (3.17) 
at (1 

and, for the $2 field, 

(3.18) 

where p = k-q.  By (3.17) we have (of. K., equations (3.4) and (3.5)) 

$2,q(k,s) = - raikj.ii~(p,~’)$~(q,s’)~(k,s-s’)e-i~.yods~. (3.22) 
c so 

18 Fluid Mech. 11 
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Thus, applying the weak statistical dependence principle (K., 3 2.2), we find that, 
in the limit L -+ 00 (cf. equations (2.38) to (2.40)), 

Returning to x-space by the arguments of (2.41) to (2.43) this becomes 

- - [ s:dt’sdx’C&(x’, t ’ )  G(x’, t’) R(r + x’, t - t’, s I ro, T ~ )  
ari ari 

-/ :ds‘ /dy‘qj(r0+ r - y’, T~ + 7 -st) G(y’, s‘) R(r - y‘, t ,  s - s’ ]  ro, 70) . 

(3.24) 

This equation may also be derived directly from (3.12) which, when the velocity 
field is stationary and homogeneous, may be written after a partial integration 
in the form 

1 

x G(y’,s’)B(x,t;y-y’,s-s‘ I ro,T0). (3.25) 

The results (3.24) and (3.25)-consequences of Kraichnan’s random coupling 
approximation-are the central results of this section. 

We will now investigate some elementary consequences of equations (3.24) 
and (3.25). On multiplying each side of (3.24) by rirj and integrating over all r 
and the right-hand side by parts, we find 

a /B(r, t ,  s I ro, 7 0 )  ri rj dr = 2 at’ dx’qi(X’, t‘) G(x’, t ’ )  
at s: s 

- 2  ds’ drq~(ro+r,7,+s’-t)R(r,t,s’1 ro,70). 

(3.26) 
s: / 

By differentiating (3.26) with respect to s, we find 

Let us take to = 0, so = 0. Then, by (3.27) and (2.50), we see that the Lagrangian 
correlation for relative velocity V between two particles which were initially 
separated by a distance ro is 

( K ( t )  J$(s))~ = 2 d r  Gj(r, s - t )  [G(r, s - t) - R(r - ro, t ,  s I ro, O ) ] .  (3.28) s 
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This result should be compared to the exact result 

275 

+ ($2(x, t )  $2(Y, s) U i h  t )  %(Y,  8)) 

- ( $ 1 ( ~ ,  t )  $ Z ( Y ,  8) ui(x, t )  uj(Y,  8)) 

- ($2(X,t) $l(Y? s) Ui(X7 t> U A Y ,  4)l, (3.29) 

where $l(x, t )  = $l(x, t 1 xo, 0) and $2(y, s) = $2(y, s I yo, 0)  denote the unaver- 
aged Green functions. In  stationary homogeneous flows, this result reduces to 
(3.28) on the assumption that the $ and u fields are statistically independent 

Also, by adding to (3.26) the analogous equation for the derivative with respect 
(cf. Q 2.3). 

to s, and setting t = s, we find 

= 4 dt’ dx’ qj(x’, t‘) G(x‘, t‘) 1: s 
For t < T(ro), the particles have not had time to change their separation greatly 
and R is negligible except near r = 0. Thus the right-hand side of (3.30) becomes 
4 [ q j ( 0 ,  0)- qj(ro,O)]t ,  in agreement with (3.10). For t 9 Z/vo, R is appreciable 
even at  separations r of order 1. For such large separations, the second term 
on the right-hand side of (3.30) is quite negligible, and we find (cf. equations 

(3.31) 

This is consistent with the intuitive notion that, at  such large separations 
from their source and each other, the particles will wander independently. 
For intermediate ranges of t ,  it  appears that no such definite statements can be 
made. However, a reasonable approximation appears to be possible and this is 
discussed in Q 3.4. 

3.3 Xolution of the equations for short times 

For t < T(ro), we may assume that the G and B factors in the integrands of 
(3.25) are both negligible unless x’, y’, x ,  y are small compared with ro. Then, 
the qi factors in the integrands may be replaced by their values for zero x’, y’, x ,  y 
and similarly for the time arguments. Therefore, in isotropic flows, we have 

a m , t ; y , s  1 ro*) 
at 

dx’ G(x’, t’) B(x - x’, t - t’; y ,  s I ro, 70) 

- qj(r 7 ) ~- ds’ dy’G(y‘, s’) B(x,  t ;  y - y‘, s - s’ 1 ro, T ~ ) .  (3.32) 
O’ O aXiaYj a2 s” s 

18-2 
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Take a combined Laplace and Fourier transform defined by 

Then, by (3.32), 
1 

pB*(k7p; 1 7  4 I rO,70) -m Q*(1,q) 

= - (2n)3k2v~Q*(k ,p)B*(k ,p;I ,q  I r,,,TO) 

-(2n)3 Uii(ro,70)ki1jQ*(1,P)B*(k713; l7q I ro ,70) ,  (3.34) 

where Q*(k ,p )  is the Fourier transform with respect to x and the Laplace trans-. 
form with respect to t of G(x, t ) .  By (2.57), we have 

(3.35) 

If we expand the denominator of (3.36), we obtain 

Now, by (3.35) 
1 

Q*(k,p)  = 
4n3[p + d(p2 + 4k"2,)] * 

(3.38) 

The inverse Laplace transformation of [Q*(k, p)]"+l is therefore (see, for example, 
Watson 1944, 13.2, equation (7)) 

(m+ 1) Jrn+l(zkv,t) 
(2n)3rn+3 (kv,)rn+lt * 

Thus 

The second moments of (3.39) agree with (3.8); the higher moments are given 
with progressively less accuracy (cf. 8 2.4). Roberts (1960) has discussed the 
significance of (3.39) in terms of a diagram expansion. The relationship 
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can be obtained by induction from results of Watson (1944,s 13.42, equation (a), 
p = 1, using also $13.24, equation (1)) or directly (Watson, 13.14). This enables 
us to invert the functionB(k, t ;  1, s I ro, 70) in the form (cf. equation (2.59)) 

if x < 2v,t and y < 2v1s, 
0 if x > 2v,t or y >2vls. 

(3.40) 

This result shows consistency with the results for one-particle diffusion as in 
3 2.3, the effect of the artificial cut-off 2vl in the p.d.f. of velocity is apparent. It is 
also clear that, if Uij(ro, 70) is small compared to v:, (3.40) reduces to its first term 

B(x, t ;  Y, s I ro, 70) + G ( x ,  t )  Q(Y, 81, 

where the right-hand side is given by (2.59). If the initial separation of the points 
is so close in space and time that we can write L&(ro, 70) = v:&, equation (3.40) 
shows (cf. Watson, $ 11.41, equation (12)) that 

R(k, t ,  s I ro, 7 0 )  = ( 2 ~ ) ~  B( - k, t ; k, s 1 ro, 70) = - - ~- - ~ 

1 J1[2kv,(s - t ) ]  
( 2 4 3  Icv,(s-t) 

or, inverting, 
R(r , t , s  I r0,70) -+ G(rO+r,s - t ) ;  ro + 0, T~ + 0. (3.41) 

This shows, as we expect, that in the limit ro -+ 0, 70 + 0, the particles are not 
separated by the flow and simply move together as one particle. (As a further 
consistency check, we note that the Lagrangian correlation (3.28) is given 
correctly by (3.41) in this case.) 

3.4. Solutions for large and intermediate times 

For very long times t 9 l/vo, there is a high probability that the particles have 
separated by a distance comparable to, or greater than, 1 and therefore wander 
independently. In  fact, the solution of (3.25) is exactly analogous to that of 
$ 2.5 for the one-point Green function, and we find 

B(x)  t ;  Y, I ro, 7 0 )  + G ( x ,  t )  G(y ,  8) (r 9 1 ) ~  (3.42) 

where G ( x ,  t )  and G(y,  s )  are given, in homogeneous flows, by the appropriate 
solutions of (2.69). In  this case we find R(r, t )  satisfies 

aR(r t )  a2R(r, t )  
at ariarj ) 

so that R ( r , t )  assumes a Gaussian form corresponding to a diffusivity twice 
that characteristic of the one particle Green function (cf. equations (2.69) and 
(3.31)). 

Consider turbulence a t  the high Reynolds numbers. Since the kinetic energy 
density of the turbulent flow must be finite, the spectrum function E(k)  must 

kB(k)  + 0, k .+ m; kE(k)  -+ 0, k -+ 0. satisfy 

2 = 2K$- -  
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Also / : E ( k ) d k  + 

where k, ( = 1/Z) and k,  are wave-numbers characteristic of the energy-containing 
range and the dissipation range, respectively. (e = rate of dissipation of energy 
per unit mass; v = kinematical viscosity.) Thus, within the inertial range 
k, << k < k,, the spectrum must be such that 

if k >> k,, lka E ( k )  k2dk = e/2v if k < k,, 

It follows that, if the inertial range spectrum approximates to a power law, it 
must be such that 

kE(k)  --f 0, k + co; k3E(k) -+ 0, k --f 0. 

For the later developments (cf. equations (3.61) and (3.62) below), we will 
require the more stringent conditions 

kE(k)  --f 0, k + co; k2E(k)  -+ 0, k -+ 0. (3.43) 

If the initial separation satisfies 
13 ro 3 l/kd, (3.44) 

we expect that, in a time large compared to T(r,)  but small compared to l/v,, 
((r - ro)2) will become large compared to r: but remain small compared to 12. 
For these ‘intermediate times’ (as we shall term them), neither the short-time 
solution of $3.3 nor the long-time solution above is valid. 

Consider R(r - r,, t ,  t + 7 I ro, 0) for 7 > 0. This quantity is the p.d.f. of the sepa- 
ration r of two particles (released at  t = 0 at  a separation of r,) one of which has 
been carried by the flow for a time t ,  and the other for a time t +7. This process 
may be visualized in two stages. During the first, of duration t ,  both particles are 
carried by the flow. Their separation r during this time is essentially unaffected 
by the energy-containing eddies which give nearly equal displacements to both 
particles. It is governed by the motions (relative to the energy-containing eddies) 
of dimension N r .  Now, in a frame moving with the energy-containing eddies, the 
r.m.s. velocity associated with these small-scale motions is very small compared 
to v,. Thus, the mean square separation (r2) at the termination of the first stage 
is very small compared to (v,Q2. During the second stage, of duration 7, one of 
the particles can be considered as fixed in space while the other is carried by the 
flow for a further time 7. Its  motion during this time is dominated by the energy- 
containing motions. During the first stage the relative diffusion is given by 
R(r,t,t  Ir,,O). During the second stage the further diffusion of the second 
particle should begiven by G(r, 7), since the energy-containing motions are almost 
uncorrelated with the small-scale motions. Thus, we expect 

R(r,  t ,  t 4-7 I r,, 0)  + R(r‘, t ,  t I r,, 0)  G(r - r’, 7) dr’. (3.45) 

It is clear that this result is exact for t = 0 or 7 = 0. Also, the change in the mean 
square separation during the second stage will be of the order of ( ~ ~ 7 ) ~ .  Thus, 

s 
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when this is large compared to the value of (rz)  at the end of the first stage, 
(3.45) becomes R(r,  t ,  t + T I r,, 0) = G ( r ,  7). (3.46) 

Consider now (3.24) and its counterpart for 8Rla.s. These show that 

x G(r’, t’)[R(r-r’, t- t’ , tI  r,,O)+R(r-r’,t,t-t’I ro,O)] . (3.47) 

By the arguments above, the integrand should be dominated by contributions 
from small t‘ (because of the behaviour of R) and from small r’ (because of the 
behaviour of G). We will therefore replace the R factors in the integrand by 
R(r,  t ,  t I r,, 0). It seems likely from the preceding discussion that this approxi- 
mation will lead to results which are at  least qualitatively correct. 

i 

We now find 

(3.48) 

rt r 
where Kij (r , t )  = 2 dt‘ dr’[?&j(r’,t’)-?&,(ro+r-r‘,i5’)]G(r’,t’). (3.49) JI J 
For short times t < T(r,) ,  (3.49) becomes 

Kij (r ,  t )  = %[$aij - q,(r,, O)], (3.50) 

which, by (3.48), is in agreement with (3.10). For very large times t > Zlv,, there 
is a high probability that the separation of particles is 2 1. For these separations, 
the second U factor in the integrand of (3.49) is negligible, and the first factor 

gives K,,(r, t)  = 2tcii, (3.51) 

in agreement with the results derived earlier (cf. equation (3.31)). 
To calculate the form of &(r, t )  for intermediate times, we express (3.49) in 

the form 
Ki,(r, t )  = 2(27r)3 dt‘ dk [l - eik.(r+ro)] q , ( k ,  t’) #(k,  t ’ ) .  (3.53) s: s 

Assuming isotropy, we can write 
k.k. E(k, t )  o . . (k ,  t )  = a . . - L !  ~ 

23 ( ‘> kz ) 4rkz ’ (3.53) 

where E(k,  0) is the energy spectrum. It follows that if we adopt spherical polar 
co-ordinates and write 

(3.48) has the form 
R(r - ro, t ,  t I ro, 0)  = R(r, 8, $4 0,  

where, by (3.52) and (3.53), 

(3.55) K ( r , t )  = 4(27f)3 

dk 2 sinkr +---I sinkr coskr E(k, t ’ )#(k, t ’ ) .  (3.56) 
3 kr ( A T ) ~  (kr)2 

X ( r , t )  = 2(2r)3 
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For small kr, the quantities in the square brackets [. . . . . .] in the integrands of 
(3.55) and (3.56) are proportional to (kr)2. Also, in the inertial range, we may take 
(cf. equation (2.21)) - 1 

G(k ,  t )  = ~ exp [ - *k2wTt2], 

and (cf. K., $8.4) E(k,  t )  = E(k)  exp [ - 4k223t2]. (3.58) 

Thus, since by our initial supposition (3.43), k2E(k) --f 0, k --f 0, it follows that 
the integrands of (3.55) and (3.56) do not tend to infinity as rapidly as k-l, 
k -+ 0. Consequently the form of E(k)  for small k ( -  k,) does not influence the 
values of K(r,  t )  and M(r ,  t )  appreciably. However, these quantities do depend 
implicitly on the energy-containing range through the forms (3.57) and (3.58) 
for G(k, t )  and E(k,  t) .  We will discuss this in more detail at  the conclusion of this 
section. 

Two further approximations are clearly justified. First, since ((r - rJ2) is 
large compared to rg for the times under consideration, the particles have in this 
time lost all ‘memory’ of their initial separation r,. Thus R(r,O,$, t )  must be 
independent of r,, 8, and $, and, by equation (3.54), it  must satisfy 

(3.57) 
(27T)3 

(3.59) 

Secondly, since ( r 2 )  is small compared to (w,Q2, the exponential factors of (3.57) 
and (3.58) are small at  the upper limit of integration over t in (3.55) and (3.56), 
and we may therefore write 

K(r,t)  = K(r)  = 4 ] E(k)  exp [ - +k2vgt2] 

dk 1 sinkr coskr 
=2J3m/ -[--- v,k 3 (kr)3 + -1 (kr)2 E(k) .  (3.60) 

Equation (3.59) was proposed by Richardson (1926) for the intermediate 
times discussed here. To investigate further the form of the variable diffusion 
coefficient (3.60) we will assume that in the inertial range the spectrum is a power 
law+ of the form (cf. equation (3.43)) 

E(k)  = / 3 ~ ~ - ~ 2 1 0 5 - ~ ~ k - ~  (1 < n < 2), (3.61) 

t We may now take the wave-number k ,  characteristic of the dissipation range to be 
k - R:/(S-fl)k,, a -  

where 

The ‘intermediate times’ referred t o  above may now be defined more precisely by 

k,  = l / l  = +& R, = V ~ I E V  = volk,V. 

Also, the circumstances under which (3.46) is a good approximation are 

Note that (3.61) may be written 
V o T / ~  $ (Vot/z)l’(z-n). 

E ( k )  = p Z ~ : ( k l ) - ~ .  
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where /3 is a dimensionless constant of the order o f  unity. With this spectrum, 
(3.60) gives, on integrating by parts and use of results o f  Watson (1944, $5  3.4, 

If we suppose that at  some time t, 9 T(ro) 

R(r, t )  = W ,  tl), 

then a t  subsequent times t (  < Z/vo), (3.59) and (3.62) show that 

(3.62) 

(3.63) 

(3.67) 

The behaviour of  ( r 2 )  as a function o f t  is extraordinarily sensitive to the value 
of n assumed. Two cases are worthy of notice: 

n = $ (Kraichnan 1959) 

K(r )  cc &r%/vi, ( r 2 )  cc e2t4/v& (3.68) 

n = (Kolmogorov 1941) 

K ( r )  cc eW/v0 ,  (r2) cc e4t6/v& (3.69) 

Neither o f  these agree with the form proposed by Richardson (1926, see also 

K(r)  oc efr4, (r2) cc et3. (3.70) 
Batchelor 1950); 

That this is so is not surprising. Kraichnan's direct interaction approximation 
does not give an inertial range spectrum which agrees with that derived from 

t The behaviour of R(r,  t )  and ( T ~ )  given by (3.66) and (3.67) is almost certainly inde- 
pendent of the approximation 

R(r - r', t -  t', t I ro, 0) = R(r, t ,  t I r,, 0) 
which led from (3.47) to (3.48). I n  fact, it can be shown that the more accurate approxi- 
mation method based on (3.45) and (3.47) leads to results whose dimensional forms are 
identical to (3.66) and (3.67). 
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Kolmogorov's similarity arguments. In  the same way, when this approximation 
is applied to turbulent diffusion, it does not give a diffusion coefficient which 
agrees with that derived by these similarity arguments, even if Kolmogorov's 
spectrum is assumed. This is because the dynamics of diffusion with a given velo- 
city field differ on the two theories. It would seem that the behaviour of ( r 2 )  as 
a function of t might provide a sensitive test by which to confront with experi- 
ment different assumptions about the structure of the inertial range. 

Kraichnan (1959) has made a detailed comparison between the direct- 
interaction approximation and the Kolmogorov theory. He has traced the 
difference in the inertial range spectra to the difference in the role played by the 
energy-containing eddies in the two cases. In  Kolmogorov's theory these eddies 
merely convect the small-scale motions without influencing their dynamics, 
whereas in the direct-interaction approximation this is not so. In  the same way, 
on arguments of the Kolmogorov type, the relative diffusion of particles should 
be independent of the energy-containing eddies. However, the application of 
the direct-interaction approximation has led to results which depend on the 
energy-containing motions. If we wish to modify our formalism in such a way 
that our results depend only on the small-scale motions, we would transform to a 
frame of reference moving with the energy-containing eddies. We would expect 
that results of the form (3.48), (3.49) would be qualitatively correct, provided 
that Q(k ,  t )  now described one-point diffusion relative to a source moving with 
the energy-containing eddies. On similarity arguments of the Kolmogorov type, 
G ( k ,  t )  would then depend upon k%* t. Similarly, E(k, t )  would describe the struc- 
ture of the small-scale eddies in a frame of reference moving with the large-scale 
motions, and would take the form 

E(k, t )  = E(k)f(k3€"). 

The over-all effect of these modifications would be that a quantity of the order of 
[kE(k)]g  would appear in place of wo in the expression (3.60) for K(r ) .  Kraichnan 
(1959, $9.1) has shown that this substitution resolves the conflict between the 
Kolmogorov theory of turbulence and the theory based on the direct-interaction 
approximation. The quantity [kE(k)]* may be considered as the r.m.s. velocity 
associated with the motions of wave-numbers k as they are convected by the 
large-scale motions. Substitution of this quantity for wo in (3.60) gives 

K(r )  ch(n-1) ui(5-3m) yJz(n+l), (3.71) 

which, taking TL = +, leads to (3.70). With these changes in the interpretation of 
Q(k ,  t )  and E(k,  t ) ,  the sensitivity of our results to the form of the inertial range 
spectrum remains. 

I am extremely grateful to Dr R. H. Kraichnan for detailed discussions and 
helpful criticisms of the work presented in this paper. 
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